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Motivation: exploring semi-structured data

Data exploration by non-technical users (NTUs)

Conflicts of Interest
in the biomedical domain

[ABB+21] w/ S. Horel

Is this dataset useful for the investigations?
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Motivation: exploring semi-structured data

Data exploration by non-technical users (NTUs)

Conflicts of Interest
in the biomedical domain

[ABB+21] w/ S. Horel

How are authors connected to biomedical companies?
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Motivation: exploring semi-structured data

Semi-structured data exploration

Several semi-structured data models:

XML documents

JSON documents

RDF graphs

Property graphs

Semi-structured dataset exploration is hard: complex, irregular structure
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Overview of our approach

Thesis approach

The problem

How to help users explore unknown heterogeneous semi-structured
datasets?

Our approach

Automatically and efficiently compute from semi-structured datasets

1 A global, easy-to-grasp overview of the data

2 The interesting connections between Named Entities
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Overview of our approach

Research contributions

Abstra: data overviews [BMU22, BMU24]

Lightweight Entity-Relationship diagrams
Compact yet meaningful data overviews
Ideal for first-sight dataset discovery

PathWays: interesting Named Entity connections
[BGLM23b, BGLM23a, BGLM24]

Interesting entity paths in and across datasets

Complete set of NE-to-NE interesting connections
Ideal for exploring connections within and across datasets
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Abstra: first-sight overview of a dataset

What does the dataset describe?

Real-world objects and relationships between them

Entity-Relationship models [RG03]

Need to compute them from the dataset!
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Abstra: first-sight overview of a dataset

What does the dataset describe?
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Abstra: first-sight overview of a dataset

The Abstra approach

1 Integrate all data sources in a graph (ConnectionLens) [ABC+22]

2 Summarize the graph

3 Among summary nodes, identify entities and their attributes

4 In the summary, identify relationships between the entities

5 Propose a simple category to each entity (best-effort)
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Abstra: first-sight overview of a dataset Background

Background: from heterogeneous data to data graphs

ConnectionLens [ABC+22]:
1 Ingests any dataset into a directed graph

Generic, flexible, fine granularity

2 Extracts Named Entities (NEs) from all text nodes

date , email address , People , Place , Organization , ...
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Abstra: first-sight overview of a dataset Data graph summarization

Data graph summarization

We need a compact representation of large data graphs

Challenges:

Heterogeneous graphs originating from different data models

Node and/or edge labels may be empty

We aim for a quotient graph summary:

Based on equivalence between nodes of the original graph

We prefer small summaries (number of nodes)
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Abstra: first-sight overview of a dataset Data graph summarization

Quotient summarization across data models

Each data model has its own syntax:

XML JSON

RDF PG
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Abstra: first-sight overview of a dataset Data graph summarization

Summarization based on same-kind nodes

We identify node kinds in each model based on the respective best
practices for data design:

XML: elements with the same label (or type)

JSON: nodes on the same path from the root

RDF [GGM20]: depending on node type(s) or, if absent, incoming
and outgoing properties

PG: adaptation of the above [GGM20]
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Abstra: first-sight overview of a dataset Data graph summarization

The summary (collection graph) G

Collection node for each equivalence class
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affiliation university city #val
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Abstra: first-sight overview of a dataset Data graph summarization

The summary (collection graph) G

Collection node for each equivalence class
Collection edge Cs → Ct if a data edge exists
Entity profile for each leaf collection node: reflects NEs in the leaves
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Abstra: first-sight overview of a dataset Identifying entities and relationships

Identifying entities in the collection graph G
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Which collections represent entities in the E-R diagram?

Which collections represent entity attributes?
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Abstra: first-sight overview of a dataset Identifying entities and relationships

Requirements and algorithm

We need an algorithm to identify entity roots and attributes for the
E-R diagram

For complex, potentially cyclic, collection graphs

Greedy selection of few entities in G
1 Assign a score to each collection node
2 While less than Emax entity roots, or data coverage < covmin

1 Elect the next highest-scored eligible collection node as an entity root

2 Compute its boundary , i.e., attribute set

3 Update the collection graph to reflect the selection of an entity

4 Recompute the scores
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Abstra: first-sight overview of a dataset Identifying entities and relationships

How to score a collection node?

Reflect the weight of this node and its structure in the dataset
1 wdesck , wleafk : # descendants, leaf descendants, at depth k

× Not clear how to pick k
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Abstra: first-sight overview of a dataset Identifying entities and relationships

How to score a collection node?

Reflect the weight of this node and its structure in the dataset

1 wdesck , wleafk : # descendants, leaf descendants, at depth k

2 Directed Acyclic Graph (DAG) rooted in each node: wDAG
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Abstra: first-sight overview of a dataset Identifying entities and relationships

Data weight

Own weight ow of a leaf node: its in-degree
Data weight dw of a leaf collection node: the sum of its nodes’ ow

companyperson

“Paris”
ow = 2

“Alice”
ow = 1

“Lyon”
ow = 1

city

n
am

e

worksFor

employs

offi
ce

office

name

person worksFor company

employs officename

#val
dw = 1

#val
dw = 3

name city
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Abstra: first-sight overview of a dataset Identifying entities and relationships

Data weight DAG propagation

Leaf collection dw is propagated back to all ancestors which are not in a
cycle

Edge transfer factor: |nodes in Ct having a parent in Cs |
|Ct |

person worksFor company

employs officename

#val
dw = 1

#val
dw = 3

name city

1
1

1 1

11

1

1

0.5 1
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Data weight DAG propagation

Leaf collection dw is propagated back to all ancestors which are not in a
cycle

Edge transfer factor: |nodes in Ct having a parent in Cs |
|Ct |
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Abstra: first-sight overview of a dataset Identifying entities and relationships

How to score a collection node?

1 wdesck , wleafk : # descendants, leaf descendants, at depth k

2 Directed Acyclic Graph (DAG) rooted in each node: wDAG

3 wPageRank : PageRank algorithm on G
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Abstra: first-sight overview of a dataset Identifying entities and relationships

PageRank score of a collection graph node
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The collection graph G
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Collections distribute their score based solely on their connectivity
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Abstra: first-sight overview of a dataset Identifying entities and relationships

How to score a collection node?

1 wdesck , wleafk : # descendants, leaf descendants, at depth k

2 wDAG : dw bottom-up propagation on G (outside cycles)

3 wPageRank : PageRank algorithm on G

4 wdwPageRank : PageRank algorithm on G with dw -tuned PR edge
weights

X Reflects both the topology and where actual data is
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Abstra: first-sight overview of a dataset Identifying entities and relationships

The data-weighted PageRank score
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The reverse collection graph GR with dw -tuned PR edge weights
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Abstra: first-sight overview of a dataset Identifying entities and relationships

The data-weighted PageRank score
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Propagates scores across the collection graph

Works on cyclic collection graphs

The score reflects the topology and where the data is

A collection node distributes its weight
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Abstra: first-sight overview of a dataset Identifying entities and relationships

How to compute an entity boundary?

Collections in G representing attributes of this entity

“Those that contribute to the entity’s weight”

The boundary may go far (for deep-structure entities)

Easy to define for wdesck , wleafk , wDAG . Example for wdesc2
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Does not apply for PageRank-based scores
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Abstra: first-sight overview of a dataset Identifying entities and relationships

Data-acyclic flooding boundary bounddfl−ac

Idea: the collection nodes

Reachable from the entity root

Mainly part of this entity

The path between the entity root and this collection’s nodes is not
data cyclic
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Data-acyclic flooding boundary bounddfl−ac

Idea: the collection nodes

Reachable from the entity root

Mainly part of this entity
Edge transfer factor ≥ fmin

At-most-one: each Cs node has at most one child in Ct

The path between the entity root and this collection’s nodes is not
data cyclic

If the path in the collection graph has no in-cycle edges
Or, the collection graph path has in-cycle edges, but they are not in
the data
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Abstra: first-sight overview of a dataset Identifying entities and relationships

Data-acyclic flooding boundary bounddfl−ac

Reachable from the entity root

Mainly part of this entity

The path is not data cyclic

paper

abstract

#val

year

#val

title

#val wB

hW

pIn

inv

author

conf

name #val

date #val

email #val

affiliation university city #val

campus#val

1

1

1
1

1

1

1

1

1 1

1

1 1

0.33

1 1

0.4

0.
6

1

1 1

1

1 1 1

1

1
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Abstra: first-sight overview of a dataset Identifying entities and relationships

How to update the collection graph after selecting an
entity?

Reflect the allocation of data nodes and edges to one entity

1 updateboolean
Collection nodes and edges in the boundary of the entity

Very efficient
Sufficient for wdesck , wleafk , wDAG

2 updateexact
Graph nodes and edges

Much more costly
Required for wPageRank , wdwPageRank
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Abstra: first-sight overview of a dataset Identifying entities and relationships

Exact graph update
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Exact graph update

paper

abstract

#val

year

#val

title

#val wB

hW

pIn

inv

author

conf

name #val

date #val

email #val

affiliation university city #val

campus#val
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Abstra: first-sight overview of a dataset Identifying entities and relationships

Selected entities and their boundaries

paper

abstract

#val

year

#val

title

#val wB

hW

pIn

inv

author

conf

name #val

date #val

email #val

affiliation university city #val

campus#val

1

1

1
1

1

1

1

1

1 1

1

1 1

0.33

1 1

0.4

0.
6

1

1 1

1
1 1 1

1

1
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Abstra: first-sight overview of a dataset Identifying entities and relationships

Finding relationships between entities

Relationship: a path from an entity to another

paper

abstract

#val

year

#val

title

#val wB

hW

pIn

inv

author

conf

name #val

date #val

email #val

affiliation university city #val

campus#val

1

1

1
1

1

1

1

1

1 1

1

1 1

0.33

1 1

0.4

0.
6

1

1 1

1
1 1 1

1

1

paper → wB → author

paper → pIn → conf

author → hW → paper

conf → inv → author
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Abstra: first-sight overview of a dataset Identifying entities and relationships

Entity classification

Assign a semantic category to each entity

Input: an entity E , categories K, semantic properties P
K: Person, ScientificPaper, Event, Website, Mountain, ...

P: {label:"address", domain:[Pers., Org.], range:[Place]}, ...

Output: a category for E

Algorithm:

Compare:

The common name of all nodes in the entity root (if it exists) with
k ∈ K (conf, paper, author)
Its attribute names with p ∈ P (affiliation, email, ...)
Its entity profiles with p.range ∈ P (�, �, �, ...)

Each good match votes for one or few categories
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Abstra: first-sight overview of a dataset Identifying entities and relationships

Entity classification

Name Similar to Votes for
paper ResearchPublication (0.85) ResearchPublication

News (0.63) News

paper

abstract

#val

year

#val

title

#val

1

1

1
1

1

1
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Abstra: first-sight overview of a dataset Identifying entities and relationships

Entity classification

Attribute Similar to Votes for
abstract abstract (1.0) ResearchPublication

summary (0.92) Book

preface (0.47)

title title (1.0) ResearchPublication

honorific title (0.87) Movie

Person

year year publication (0.85 + �) Event

Book

ResearchPublication, ...

paper

abstract

#val

year

#val

title

#val

1

1

1
1

1

1
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Abstra: first-sight overview of a dataset Identifying entities and relationships

Entity classification

paper nodes classified as ResearchPublication

author nodes classified as Researcher

conference nodes classified as Event

paper

abstract

#val

year

#val

title

#val wB

hW

pIn

inv

author

conf

name #val

date #val

email #val

affiliation university city #val

campus#val

1

1

1
1

1

1

1

1

1 1

1

1 1

0.33

1 1

0.4

0.
6

1

1 1

1

1 1 1

1

1
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Abstra: first-sight overview of a dataset Identifying entities and relationships

Abstra output: a lightweight Entity-Relationship diagram

318 person (Person)
• person@id (100 %) 
• phone (49 %) 
• creditcard (49 %) 
• homepage (47 %) 
• address (46 %) 

 • province (52 %) 
 • zipcode (100 %) 
 • country (100 %) 
 • city (100 %) 
 • street (100 %) 

• emailaddress (100 %) 
• name (100 %) 

150 open_auction (Product)
• privacy (56 %) 
• interval (100 %) 

 • end (100 %) 
 • start (100 %) 

• type (100 %) 
• current (100 %) 
• reserve (51 %) 
• initial (100 %) 
• open_auction@id (100 %) 
• quantity (100 %) 

watches.watch@open_auction

12 category (Thing)
• category@id (100 %) 
• description (100 %) 

 • text (73 %) 
 • parlist (27 %) 

  • listitem (291 %) 

   • text (87 %) 

• name (100 %) 

profile.interest@category

seller@person

annotation.author@person

bidder.personref@person

270 item (schema:how_to_item)
• mailbox (64 %) 

 • mail (101 %) 

  • date (100 %) 
  • to (100 %) 
  • from (100 %) 
  • text (100 %) 

• item@featured (9 %) 
• item@id (100 %) 
• shipping (94 %) 
• description (100 %) 

 • text (73 %) 
 • parlist (27 %) 

  • listitem (291 %) 

   • text (87 %) 

• payment (94 %) 
• name (100 %) 
• quantity (100 %) 
• location (100 %) 

itemref@item

incategory@category

120 closed_auction (Product)
• price (100 %) 
• type (100 %) 
• date (100 %) 
• quantity (100 %) 

seller@person

buyer@person

annotation.author@person

itemref@item
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Abstra: first-sight overview of a dataset Identifying entities and relationships

Abstra output: a lightweight Entity-Relationship diagram
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Abstra: first-sight overview of a dataset Experimental evaluation

Experimental evaluation

On main semi-structured data models: 8 JSON, 7 RDF, 5 XML, 3 PG

10 synthetic, 13 real-world

5M to 14M nodes

Collection graphs:

26 to 4.8K collections
14/23 have cycles

Graphs stored in PostgreSQL, algorithms in SQL and Java

We evaluate:

1 Entity selection quality

2 Scalability
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Abstra: first-sight overview of a dataset Experimental evaluation

Entity selection quality with (wdwPageRank , boundfl−ac)

Dataset name |C | |ME| |MR| cov ME dmax |ME i |

Mondial � 168 5 8 0.85

City
Province
Country
Organization
River

3
3
4
4
4

3,152
1,455

231
168
135

PubMed 26 1 0 1.0 PubMedArticle 5 957

XMark1 � 136 5 10 0.91

Person
Item
Open Auction
Closed Auction
Category

4
7
8
8
2

25,500
21,750
12,000

9,750
1,000

XMark4 � 136 5 10 0.90

Person
Item
Open Auction
Closed Auction
Category

4
7
8
8
2

102,000
87,000
48,000
39,000

4,000

Wikimedia 59 2 0 1.0
Page
Namespace

4
3

54,750
32
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Abstra: first-sight overview of a dataset Experimental evaluation

Entity selection quality with (wdwPageRank , boundfl−ac)
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Abstra selects frequent, coherent and semantically central entities
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Abstra: first-sight overview of a dataset Experimental evaluation

Experimental evaluation: scalability

Our abstraction method scales up linearly in the data size
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Abstra: first-sight overview of a dataset Related work

Related work

Data summarization

Structural

Quotient [GGM20, KC10, MS99]
(the one we adopt to build G)
Non-quotient [GW97]

Pattern mining [ZLVK16]

Statistical [HS12]

Hybrid [RGSB17]

Schema inference

XML [CGS11]

JSON [BCGS19]

RDF [GLSW22]

PG [LBH21]

Data summarization and schema inference are tied to one data model

Schemas are often not suited to NTUs
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Abstra: first-sight overview of a dataset Related work

A JSON schema from social network data using [BCGS19]
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Pathways: efficiently finding interesting paths

Outline

1 Motivation: exploring semi-structured data

2 Overview of our approach

3 Abstra: first-sight overview of a dataset

4 Pathways: efficiently finding interesting paths

5 Systems developed

6 Conclusion
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Pathways: efficiently finding interesting paths

Data is often used to find connections
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Pathways: efficiently finding interesting paths How are Named Entities connected?

How are Named Entities connected?

Enumerate paths between (value) nodes in which NEs have been detected

On the data graph (expensive)

On the collection graph (much faster)

Regardless of the edge direction

Each collection graph path, evaluated on the data graph, turns into a
relation (set of data paths)

Challenges:

Finding only interesting paths (to be seen)

Efficiently evaluating the paths over the data graph: multi-query
optimization [BGLM24]
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Pathways: efficiently finding interesting paths NE-to-NE path enumeration

What makes a NE-to-NE path interesting?

Some paths connecting Person NEs (�) to Organization NEs (�)

�← #val ← Name ← Author → Affiliation → #val → �

�← #val ← Name ← Author ← Authors ← Article → Journal → #val → �

�← #val ← COI ← Article → Journal → #val → �← #val → �

Which paths are most interesting and deserve to be evaluated?
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Pathways: efficiently finding interesting paths NE-to-NE path enumeration

What makes a NE-to-NE path interesting?

Some paths are unreliable: we face entity extraction errors

E.g., “John Hopkins︸ ︷︷ ︸
person

University Hospital”

False positives, or wrong entity type attribution, e.g., “THC︸︷︷︸
org.

”

Some paths are structurally weak: we face information dilution

E.g., a paper has 50 authors

Path interestingness : based on edge reliability and edge force
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Pathways: efficiently finding interesting paths NE-to-NE path enumeration

What makes a NE-to-NE path interesting?

1 Reliability r(Ci 99K �) of an extraction collection edge

The ratio of NEs having the type �, and extracted from Ci

Path reliability: minimum extraction edge reliability

2 Force f (Ci → Cj) of a structural collection edge

The inverse of the maximal source node out-degree among data edges
represented by Ci → Cj

Path force: product of edge forces

3 Rank paths on their reliability, then their force

4 Take a top-k or those having r ≥ θ
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Pathways: efficiently finding interesting paths NE-to-NE path enumeration

What makes a NE-to-NE path interesting?

Some paths connecting Person NEs (�) to Organization NEs (�)

�
1.0←−− #val

1.0←−− Name
1.0←−− Author

1.0−−→ Affiliation
1.0−−→ #val

0.91−−→ �

Reliable; strong

�
1.0←−− #val

1.0←−− Name
1.0←−− Author

0.02←−− Authors
1.0←−− Article

1.0−−→ Journal
1.0−−→ #val

0.41−−→ �

Reliable; weak

�
0.09←−− #val

1.0←−− COI
1.0←−− Article

1.0−−→ Journal
1.0−−→ #val

0.05−−→ � 0.09←−− #val
0.04−−→ �

Not reliable; strong
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Pathways: efficiently finding interesting paths NE-to-NE path enumeration

PathWays output: data paths as tables
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Pathways: efficiently finding interesting paths Experimental evaluation

Experimental evaluation

On 3 semi-structured datasets: Yelp (JSON), PubMed (XML), Nasa (RDF):

Real-world datasets

57K to 230K nodes

300 to 6K NEs of a given type

We evaluate path interestingness
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Pathways: efficiently finding interesting paths Experimental evaluation

Experimental evaluation: path interestingness

(τ1, τ2) min prel max prel p20
rel |P| |P ′| R = |P ′|

|P|

P
u

b
M

ed

(Person, Organization) 0.0150 0.9142 0.0409 52 20 38.45%
(Person, Location) 0.0150 0.9107 0.0150 30 20 66.66%
(Location, Organization) 0.0150 0.9107 0.0232 34 20 58.82%
(Person, Person) 0.0150 0.9774 0.0150 24 20 83.33%
(Organization, Organization) 0.0150 0.4158 0.0232 31 20 64.51%
(Location, Location) 0.0150 0.0954 0.0150 20 20 100.00%

N
as

a

(Person, Organization) 0.0014 0.0645 0.0178 191 20 10.47%
(Person, Location) 0.0014 0.0645 0.0077 142 20 14.08%
(Location, Organization) 0.0014 0.1016 0.0077 115 20 17.39%
(Person, Person) 0.0014 0.0232 0.0077 110 20 18.18%
(Organization, Organization) 0.0014 0.0581 0.0077 92 20 21.73%
(Location, Location) 0.0014 0.3790 0.0077 67 20 29.85%

Y
el

p (Location, Organization) 0.0002 0.9997 0.0002 8 8 100.00%
(Location, Location) 0.0002 1.0000 0.0002 11 11 100.00%
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Y
el

p (Location, Organization) 0.0002 0.9997 0.0002 8 8 100.00%
(Location, Location) 0.0002 1.0000 0.0002 11 11 100.00%

Both reliability and force downgrade meaningless paths (NE errors or
structurally weak)
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Pathways: efficiently finding interesting paths Related work

Related work

Structured querying

SQL, SPARQL, GQL
[DFG+22]

Assisted struct. querying

Interactive queries [DAB16]

Guided query writing
[ERAAL18, KKBS10]

NL2SQL [KSHL20]

Keyword-based search

Unidirectional
[ABC+02, LOF+08]

Bi-directional [ABC+22]

Path search in struct. queries

SPARQL extensions:
[ASMH18, AMSH18,
AMM23]

For PGs: [DFG+22]

Pathways users need no knowledge of the graph structure or values

Less intimidating for NTUs
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Systems developed

Outline

1 Motivation: exploring semi-structured data

2 Overview of our approach

3 Abstra: first-sight overview of a dataset

4 Pathways: efficiently finding interesting paths

5 Systems developed

6 Conclusion
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Systems developed

Systems developed

Abstra for data abstraction:

https://team.inria.fr/cedar/projects/abstra/

65 Java core classes and 10K LOC
Demonstrated at CIKM 2022 [BMU22] (also BDA 2022)

PathWays for NE-to-NE paths:

https://team.inria.fr/cedar/projects/pathways/

18 Java core classes and 4K LOC
Demonstrated at ESWC 2023 [BGLM23b] (also BDA 2023)

ConnectionStudio for NTU data exploration:

https://connectionstudio.inria.fr/

4K Java LOC and 21K JavaScript LOC (w/ T. Galizzi, S. Ebel,
M. Mohanty)
Demonstrated at CoopIS 2023 [BEG+23] (also BDA 2023)
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Systems developed

ConnectionStudio software pile

All deployed using Maven, hundreds of unit tests, etc.
Help from T. Galizzi, M. Mohanty
Several rounds of re-engineering (ML model memory consumption, etc.)

ConnectionStudio

Pathways

Abstra

ConnectionLens, incl. [AMM23] RDFQuotient (14K LOC)

OntoSQL (85K LOC)

Jena
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Systems developed

A comprehensive data exploration tool for NTUs

ConnectionStudio: a data lake for ingesting, exploring and querying
heterogeneous data

1 Data abstractions as E-R diagrams (Abstra)

2 NE-to-NE paths as tables (PathWays)

3 “Gentle introduction” to the data lake (w/ journalist input)

Demonstrated to journalists at DataJournos (40) and CFI (60)

ConnectionStudio interesting for a first look at the data.
Still maturing...
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Conclusion

Takeaways and next steps

We introduced:

1 A unified view over heterogeneous semi-structured data models

2 Abstra: a dataset abstraction system for semi-structured data

3 PathWays: an entity-focused exploration system

4 ConnectionStudio: a comprehensive data lake exploration tool

Next steps:

Generate PG schemas from abstractions [BEMM24]

Migrate data graphs into PG graphs

Enrich extracted NEs with RDF knowledge bases
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Conclusion

Publications (1/2)

Abstra: N. Barret, T. Enache, N. Dobričic, S. Ebel, T. Galizzi, I.
Manolescu, P. Upadhyay, M. Mohanty

1 Finding the PG schema of any (semi)structured dataset: a tale of
graphs and abstraction, SEAGraph’24

2 Computing generic abstractions from application datasets, EDBT’24

3 Abstra: toward generic abstractions for data of any model, CIKM’22

4 Toward Generic Abstractions for Data of Any Model, BDA’21

5 Facilitating Heterogeneous Dataset Understanding, BDA’21
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Conclusion

Publications (2/2)

PathWays: N. Barret, A. Gauquier, J. J. Law, I. Manolescu

1 Exploring heterogeneous data graphs through their entity paths,
INFSYS’24 – submitted

2 Exploring heterogeneous data graphs through their entity paths,
ADBIS’23

3 PathWays: entity-focused exploration of heterogeneous data graphs,
ESWC’23

ConnectionStudio: N. Barret, S. Ebel, T. Galizzi, I. Manolescu, M.
Mohanty

1 User-friendly exploration of highly heterogeneous data lakes, EGC’24

2 User-friendly exploration of highly heterogeneous data lakes,
CoopIS’23
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Conclusion

Thanks

My PhD advisor: Ioana Manolescu

Interns I co-supervised

The CEDAR team

My family

The CEDAR team at Saint-Rémy-lès-Chevreuse in 2023

Nelly Barret (Inria) Semi-structured Data Exploration March 15, 2024 85 / 100



Conclusion

References I

Angelos-Christos G. Anadiotis, Oana Balalau, Theo Bouganim, Francesco Chimienti, Helena Galhardas, Mhd Yamen

Haddad, Stephane Horel, Ioana Manolescu, and Youssr Youssef.
Empowering investigative journalism with graph-based heterogeneous data management.
IEEE Data Eng. Bull., 44(3):12–26, 2021.

B Aditya, Gaurav Bhalotia, Soumen Chakrabarti, Arvind Hulgeri, Charuta Nakhe, S Sudarshanxe, et al.

BANKS: browsing and keyword searching in relational databases.
In VLDB’02: Proceedings of the 28th International Conference on Very Large Databases, pages 1083–1086. Elsevier,
2002.

Angelos Anadiotis, Oana Balalau, Catarina Conceicao, et al.

Graph integration of structured, semistructured and unstructured data for data journalism.
Inf. Systems, 104, 2022.

Angelos Christos Anadiotis, Ioana Manolescu, and Madhulika Mohanty.

Integrating connection search in graph queries.
In ICDE, April 2023.

Christian Aebeloe, Gabriela Montoya, Vinay Setty, and Katja Hose.

Discovering diversified paths in knowledge bases.
Proc. VLDB Endow., 11(12):2002–2005, 2018.
Code available at: http://qweb.cs.aau.dk/jedi/.

Nelly Barret (Inria) Semi-structured Data Exploration March 15, 2024 86 / 100



Conclusion

References II

Christian Aebeloe, Vinay Setty, Gabriela Montoya, and Katja Hose.

Top-k diversification for path queries in knowledge graphs.
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Conclusion

Data-acyclic flooding boundary

mailbox email date #val

content list item text #val

The boundary is truncated due to cyclic collection edges
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Conclusion

Entity classification time

The classification time is composed of:

Loading the Word2Vec semantic model

Constant, 4-8 seconds

Comparing entity attributes with semantic properties

Varies with the number of entities and their number of attributes
May vary in a generated dataset of different sizes (different entity
roots)

Computing entity profiles

Linear in the input size
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Conclusion

RDF quotient graph summarization [GGM20]

Source clique: set of outgoing properties co-occuring together on at
least one node

Target clique: set of incoming properties co-occuring together on at
least one node

Properties “a”, “b”, “d” are in the
same source clique

Properties “a” and “e” are in the
same target clique

(c) Pawel Guzewic
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Conclusion

Strong summary [GGM20]

Strong S summary:

Two nodes are S equivalent iff they have both the same source and
target cliques

Source and target cliques for each
node

Strong summary

(c) Pawel Guzewic
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Conclusion

Typed-strong summary [GGM20]

Typed-strong TS summary:

Two typed nodes are TS equivalent iff they have the same type set

Two untyped nodes are TS equivalent iff they have both the same
source and target cliques

Source and target cliques for each
node + an RDF type

Typed-strong summary

(c) Pawel Guzewic
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Conclusion

Disagreement between Flair and ChatGPT

False Flair positives:
Flair identifies “Av. Peter Henry Rolfs︸ ︷︷ ︸

person

36570-900 Vicosa”

Flair mislead by capitalization:
Flair identifies “Claudin-7b︸ ︷︷ ︸

person

” (but not ChatGPT)

Different token allocation:
“University of Alabama︸ ︷︷ ︸

org.

”, “Birmingham︸ ︷︷ ︸
loc.

”

“University of Alabama, Birmingham︸ ︷︷ ︸
loc.

”

Missed non-English spelling/names:
ChatGPT finds “Antonio González︸ ︷︷ ︸

person

”

ChatGPT finds “Yoshida, Sakyo-ku, Kyoto 606-8501, Japan︸ ︷︷ ︸
loc.

”

Nelly Barret (Inria) Semi-structured Data Exploration March 15, 2024 97 / 100



Conclusion

A comprehensive data exploration tool for NTUs
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Conclusion

Experimental evaluation: Flair VS ChatGPT NE extractors

Flair and ChatGPT mostly agree
ChatGPT extraction has better quality
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